New learning discoveries about 5631-96-9

As the paragraph descriping shows that 5631-96-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.5631-96-9,2-(2-Chloroethoxy)tetrahydro-2H-pyran,as a common compound, the synthetic route is as follows.

A reaction vessel is charged with N-Boc 4-hydroxyl-5?-spiro-thalidomide (1 equiv.), potassium carbonate (2 equiv.) and DMF (0.5 M). 2-(2-chloroethoxy)tetrahydro-2H-pyran (1.1equiv.) is added and the reaction is heated at 110 C for 12 hours. The reaction is then cooled to ambient temperature and concentrated. The residue is taken up in water and ethyl acetate and the layers separated. The aqueous layer is extracted with ethyl acetate (2 x). The combined organic layer is washed with brine, dried over sodium sulfate, filtered and concentrated. The crude residue is used directly in the following reaction.A reaction vessel is charged with crude residue (1 equiv.), MeOH and DCM (1:1, 0.2 M). p-Toluenesulfonic acid (0.1 equiv.) is added and the reaction mixed at ambient temperature. Upon completion of the hydrolysis reaction, the volatiles are removed by rotary evaporation and the residue purified by silica gel chromatography to provide tert-butyl 7-(4-(2-hydroxyethoxy)-1,3- dioxoisoindolin-2-yl)-4,6-dioxo-5-azaspiro[2. 5]octane-5-carboxylate., 5631-96-9

As the paragraph descriping shows that 5631-96-9 is playing an increasingly important role.

Reference£º
Patent; C4 THERAPEUTICS, INC.; PHILLIPS, Andrew, J.; NASVESCHUK, Chris, G.; HENDERSON, James, A.; LIANG, Yanke; FITZGERALD, Mark, E.; MICHAEL, Ryan, E.; (790 pag.)WO2017/197056; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 14774-37-9

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14774-37-9,Tetrahydropyran-4-methanol,as a common compound, the synthetic route is as follows.

Step 2 Under an argon atmosphere, (tetrahydropyran-4-yl)-methanol (14.01 g, 120.6 mmol) was dissolved in dichloromethane (241 mL), and triethylamine (50.44 mL, 361.8 mmol) was added thereto under ice-cooling, and then, methanesulfonyl chloride (11.21 mL, 144.7 mmol) was slowly added dropwise thereto at 10C or lower. After the dropwise addition was completed, the mixture was stirred at room temperature for 2 hours. Water was added to the mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was reslurried in hexane to give (tetrahydropyran-4-yl)methylmethanesulfonate (20.51 g, 105.6 mmol, yield: 87%). 1H-NMR (dppm, CDCl3) : 4.07 (d, J = 6.6 Hz, 2H), 4.00 (dd, J = 11.8, 2.2 Hz, 2H), 3.40 (dt, J = 11.8, 2.2 Hz, 2H), 3.02 (s, 3H), 2.10-1.96 (m, 1H), 1.69-1.63 (m, 2H), 1.47-1.32 (m, 2H). Mass (m/e): 195 (M+H)+, 14774-37-9

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

Reference£º
Patent; Kyowa Hakko Kirin Co., Ltd.; EP2090570; (2009); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 101691-65-0

101691-65-0, As the paragraph descriping shows that 101691-65-0 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.101691-65-0,(Tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

A solution of 5-bromo-2-chloropyridin-3-amine (1.3 g, 6.27 mmol) in DMF (20 ml_) was added slowly sodium hydride (60 wt.% in mineral oil, 0.301 g) was stirred for 20 min, followed by addition of (tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate (1.694 g, 6.27 mmol). The resulting reaction mixture was stirred at room temperature for 58 hrs, diluted with EtOAc, washed with water, brine, dried over sodium sulphate, filtered off and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexane = 22/78) providing 5-bromo-2-chloro-N- ((tetrahydro-2H-pyran-4-yl)methyl)pyridin-3-amine (1.27 g). LCMS (m/z): 305.0 [M+H]+; Rt = 0.89 min.

101691-65-0, As the paragraph descriping shows that 101691-65-0 is playing an increasingly important role.

Reference£º
Patent; NOVARTIS AG; BARSANTI, Paul A.; HU, Cheng; JIN, Xianming; NG, Simon C.; PFISTER, Keith B.; SENDZIK, Martin; SUTTON, James; WO2012/101063; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 1240390-36-6

1240390-36-6, 1240390-36-6 tert-Butyl ((3R,4R)-4-aminotetrahydro-2H-pyran-3-yl)carbamate 68077633, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1240390-36-6,tert-Butyl ((3R,4R)-4-aminotetrahydro-2H-pyran-3-yl)carbamate,as a common compound, the synthetic route is as follows.

Step 2 {(3R,4R)-4-[7-(Naphthalene-2-ylcarbamoyl)-thieno[3,2-d]pyrimidin-2-ylamino]-tetrahydro-pyran-3-yl}-carbamic acid tert-butyl ester To a solution of 2-chloro-thieno[3,2-d]pyrimidine-7-carboxylic acid naphthalene-2-ylamide (0.0792 g, 0.233 mmol) and tert-butyl (3R,4R)-4-aminotetrahydro-2H-pyran-3-ylcarbamate (0.0756 g, 0.350 mmol) in dioxane (3 mL) was added diisopropylethylamine (0.122 mL, 0.699 mmol). The reaction mixture was heated at 120 C. overnight. The reaction mixture was cooled and then diluted with dichloromethane, washed with aqueous sodium carbonate, then brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue obtained was then purified by chromatography (silica, 40 g, 0 to 60% ethyl acetate in hexanes) to give {(3R,4R)-4-[7-(naphthalene-2-ylcarbamoyl)-thieno[3,2-d]pyrimidin-2-ylamino]-tetrahydro-pyran-3-yl}-carbamic acid tert-butyl ester (0.063 g, 0.121 mmol, 52%) as a yellow solid. LCMS m/z [M+H]=520.

1240390-36-6, 1240390-36-6 tert-Butyl ((3R,4R)-4-aminotetrahydro-2H-pyran-3-yl)carbamate 68077633, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Hoffmann-La Roche Inc.; Chen, Shaoqing; Hermann, Johannes Cornelius; Le, Nam T.; Lucas, Matthew C.; Padilla, Fernando; US2013/178460; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 4295-99-2

4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4295-99-2,4-Cyanotetrahydro-4H-pyran,as a common compound, the synthetic route is as follows.,4295-99-2

Example 9ii (3-BromophenyI)(tetrahydro-2H-pyran-4-yI)methanimine 1,3-Dibromobenzene (3.04 mL, 25.2 mmol) was dissolved in Et2O (60 mL) and cooled to – 78 0C. n-Butyllithium (10.1 mL, 25.25 mmol) was added and the the solution stirred for 30 min. Tetrahydro-2H-pyran-4-carbonitrile (2.80 g, 25.20 mmol) was added in Et2O (20 mL) is at -78 0C and the reaction was stirred for 30 min. The reaction was then allowed to warm to room temperature over 30 min. MeOH (20 mL) containing ammonium acetate (2 g, 25.95 mmol) was added. The solvents were evaporated and the residue taken up in DCM and water. The organic layer was separated and the aqueous phase extracted with DCM. The combined organic phases were shaken with brine and dried over MgSO4. The mixture was20 filtered and the solvent evaporated to yield 4.64 g (69% yield) of the title compound: MS (ES+) m/z 268, 270 [M+H]+.

4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; ASTRAZENECA AB; BLID, Jan; GINMAN, Tobias; GRAVENFORS, Ylva; KARLSTROeM, Sofia; KIHLSTROeM, Jacob; KOLMODIN, Karin; LINDSTROeM, Johan; RAHM, Fredrik; SUNDSTROeM, Marie; SWAHN, Britt-Marie; VIKLUND, Jenny; VON BERG, Stefan; VON KIESERITZKY, Fredrik; WO2011/2408; (2011); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 33821-94-2

33821-94-2, 33821-94-2 2-(3-Bromopropoxy)tetrahydro-2H-pyran 2777988, aTetrahydropyrans compound, is more and more widely used in various fields.

33821-94-2, 2-(3-Bromopropoxy)tetrahydro-2H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 5 7-benzyl-8-chloro-l-(3-(tetrahydro-2H-pyran-2-yloxy)propyl)-3-((2-(trimethylsilyl)ethoxy)methyl)-lH-purine-2,6(3H,7H)-dione To a solution of 7-benzyl-8-chloro-3-((2-(trimethylsilyl)ethoxy)methyl)-lH-purine-2,6(3H,7H)- dione (5 g, 12.32 mmol) in DMF (30 mL) was added 2-(3-bromopropoxy)tetrahydro-2H-pyran (3.60 g, 16.22 mmol, intermediate 14 step 1), followed by potassium carbonate (3.4 g, 24.64 mmol). The mixture was stirred at 65 C overnight. The mixture was diluted with ethyl acetate and water, and the phases were separated. The organic phase was washed with brine, dried over sodium sulfate, filtered and concentrated to give 7-benzyl-8-chloro-l -(3-(tetrahydro-2FI-pyran-2- yloxy)propyl)-3-((2-(trimethylsilyl)ethoxy)methyl)-lH-purine-2,6(3H,7H)-dione (6.3 g, 93.3% yield) as yellow oil. LCMS retention time 3.574 min; LCMS MNa+ 571 .

33821-94-2, 33821-94-2 2-(3-Bromopropoxy)tetrahydro-2H-pyran 2777988, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; HYDRA BIOSCIENCES, INC.; CHENARD, Bertrand; GALLASCHUN, Randall; WO2014/143799; (2014); A2;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 101691-65-0

The synthetic route of 101691-65-0 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.101691-65-0,(Tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate,as a common compound, the synthetic route is as follows.

To a solution of (3-bromo-4-fluoro-phenyl)-carbamic acid tert-butyl ester (300 mg, 1.03 mmol) and toluene-4-sulfonic acid tetrahydro-pyran-4-ylmethyl ester (335 mg, 1.24 mmol) in DMF (4 mL) under argon was added sodium hydride (60 wt.%, 83 mg). The mixture was stirred at ambient temperature for 30 min and at 45 C for 15 hrs. The reaction mixture was cooled to room temperature and was diluted with EtOAc. The organic layer was washed with water and brine, dried over sodium sulfate, filtered off and concentrated under reduced pressure providing crude (3-bromo-4-fluoro-phenyl)- (tetrahydro-pyran-4-ylmethyl)-carbamic acid tert-butyl ester (320 mg) as yellow oil, which was directly used in the next step without purification. LCMS (m/z): 288/290 [M+H, loss of t-Bu]; Rt = 1.11 min., 101691-65-0

The synthetic route of 101691-65-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; NOVARTIS AG; PFISTER, Keith B; SENDZIK, Martin; WO2011/26917; (2011); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 33821-94-2

The synthetic route of 33821-94-2 has been constantly updated, and we look forward to future research findings.

33821-94-2, 2-(3-Bromopropoxy)tetrahydro-2H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a flask containing (S)-(but-3-yn-2-yloxy)(tert-butyl)dimethylsilane 34 (2.21 g, 12 mmol) in dry THF (40 mL) was added dropwise at -30 C a solution of n-BuLi (1.6 M in hexanes, 7.5 mL, 12 mmol) and the mixture was stirred for 30 min. The reaction mixture was cooled to -78 C, dry HMPA (5 mL) was added and the solution stirred for 15 min. Then a solution of 2-(3-bromopropoxy)tetrahydro-2H-pyran (2.54 g, 11.4 mmol) in dry THF (10 mL) was added dropwise and the reaction mixture was allowed to warm to 23 C slowly. After 40 h, the reaction mixture was diluted with water (5 mL) and extracted with Et2O (4 ¡Á 25 mL). The combined organic extracts were washed with H2O (5 mL) and brine (5 mL), dried over MgSO4, filtered and the solvents removed under reduced pressure. The crude product was purified by column chromatography (pentane:Et2O 90:10) to give 35 (3.02 g, 81% yield). 1H NMR (400 MHz, 21 C, CDCl3): 4.61-4.56 (m, 1H), 4.54-4.45 (m, 1H), 3.92-3.76 (m, 2H), 3.55-3.41 (m, 2H), 2.36-2.24 (m, 2H), 1.88-1.66 (m, 4H), 1.64-1.46 (m, 4H), 1.37 (d, J 6.4, 3H), 0.90 (s, 9H), 0.11 (d, J 3.9, 6H)., 33821-94-2

The synthetic route of 33821-94-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Krief, Alain; Wouters, Johan; Norberg, Bernadette; Kremer, Adrian; Arkivoc; vol. 2018; 5; (2018); p. 308 – 333;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 14774-37-9

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14774-37-9,Tetrahydropyran-4-methanol,as a common compound, the synthetic route is as follows.,14774-37-9

I: Toluene-4-sulfonic acid tetrahydropyran-4-ylmethyl ester Intermediate p-Toluenesulfonyl chloride (29.8 g, 157 mmol) was added portionwise to a mixture of tetrahydro-2H-pyran-4-yl-methanol (20.0 g, 172 mmol) and pyridine (25.2 ml, 313 mmol) in dichloromethane (200 ml). The mixture was stirred at room temperature for 17 h, then quenched with aqueous hydrochloric acid (2 M; 100 ml). The layers were separated and the aqueous layer extracted 2 with dichloromethane (2*100 ml). The organic layers were combined and concentrated in vacuo. Recrystallisation from dichloromethane:n-heptane (5:1) afforded toluene-4-sulfonic acid tetrahydro-pyran-4-ylmethyl ester. The mother liquors were further purified by silica gel column chromatography eluding with 50% dichloromethane in n-heptane to yield a further quantity of toluene-4-sulfonic acid tetrahydropyran-4-ylmethyl ester (total yield 41.6 g, 154 mmol).

As the paragraph descriping shows that 14774-37-9 is playing an increasingly important role.

Reference£º
Patent; N.V. Organon; US2008/207598; (2008); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 7525-64-6

As the paragraph descriping shows that 7525-64-6 is playing an increasingly important role.

7525-64-6, 4-Methyltetrahydro-2H-pyran-4-ol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

7525-64-6, At 0C, pyridine (1.81 mL, 22.5 mmol) was added dropwise to a suspension of 4- methyltetrahydropyran-4-ol (1.74g, 15mmol) and 2-bromo-2,2-difluoro-acetyl chloride (3.3 g, 17 mmol) in ACN (13 mL). The mixture was then warmed to rt, stirred for 30 minutes and concentrated. The residue was triturated with heptane and filtered. The filtrate was concentrated to give (8a) as yellow oil (1.9 g, 7 mmol, 45%).

As the paragraph descriping shows that 7525-64-6 is playing an increasingly important role.

Reference£º
Patent; MUTABILIS; BARBION, Julien; CARAVANO, Audrey; CHASSET, Sophie; CHEVREUIL, Francis; LEDOUSSAL, Benoit; LE STRAT, Frederic; MOREAU, Francois; QUERNIN, Marie-Helene; WAECKEL, Ludovic; SIMON, Christophe; OLIVEIRA, Chrystelle; (91 pag.)WO2018/141991; (2018); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics