Brief introduction of 4677-18-3

The synthetic route of 4677-18-3 has been constantly updated, and we look forward to future research findings.

4677-18-3,4677-18-3, 2-(Tetrahydro-2H-pyran-4-yl)ethanol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: DIPEA (9.42mmol) was added to a solution of N-(tert-butoxycarbonyl)-1-methyl-d-tryptophan (3.14mmol), the appropriate alcohol or amine (3.14mmol) and HATU (3.14mmol) in acetonitrile (30mL) at 0C, and the solution was allowed to warm to rt. After stirring overnight (17h), the reaction was diluted with water (50mL) and the product was extracted with CH2Cl2 (3¡Á50mL). The combined organic extract was washed with water (25mL), brine (25mL) dried over Na2SO4 and concentrated under reduced pressure to afford the crude. Chromatographic purification afforded the desired product.

The synthetic route of 4677-18-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Adams, James; Brincks, Erik L.; Jaipuri, Firoz A.; Kumar, Sanjeev; Link, Charles; Marcinowicz, Agnieszka; Mautino, Mario R.; Potturi, Hima; Vahanian, Nicholas; Van Allen, Clarissa; Waldo, Jesse P.; Zhuang, Hong; European Journal of Medicinal Chemistry; vol. 198; (2020);,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 1768-64-5

As the paragraph descriping shows that 1768-64-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1768-64-5,4-Chlorotetrahydropyran,as a common compound, the synthetic route is as follows.

To a vigorously stirred suspension of Mg (1.76 g, 72.8 mmol) turnings and iodine (46.1 mg, 0.182 mmol) in THF (2 mL) under N2 was added 1,2-dibromoethane (68.3 mg, 0.364 mmol) and 10% of a solution of 4-chlorotetrahydro-2H-pyran (4.4 g, 36.4 mmol) in THF (18 mL). Themixture was heated to 60C and as the reaction mixture turned clear and Grignard initiatedtook place, the remainder of the solution of 4-chlorotetrahydro-2H-pyran in THF was added slowly over 30 mm. The reaction mixture was stirred at 65C for 2h to give a solution of (tetrahydro2H-pyran-4-yl)magnesium chloride in THF (-2M). The Grignard solution was used without any further purification. The solution of 36-4 (800 mg, 2.06 mmol) in THF (150 mL) under N2 wasadded to Grignard reagent at 15C in one portion. After stirring at 15C for 2 mm, the mixture was quenched by 200 mL of sat.NH4C1 and extracted with 200 mL of EtOAc. The separated organic phase was washed with 200 mL of brine, dried over Na2504, filtered and concentrated. The residue was purified by Combi-flash (0%-30% of EtOAc in PE/DCM(v/v=1/1)) to afford 36-5 (550 mg, 56%) as off-white solid, and 50 mg of 36-5 was delivered. ?H NMR (400 MHz,CDC13) 5.32-5.25 (m, 1H), 4.06-3.96 (m, 2H), 3.42-3.29 (m, 3H), 2.39-2.33 (m, 1H), 2.07-1.79(m, 6H), 1.77-1.60 (m, 7H), 1.5 1-1.38 (m, 1OH), 1.35-1.21 (m, 4H), 1.16-1.01 (m, 8H), 0.97-0.90(m, 4H), 0.85 (t, J = 7.4 Hz, 3H), 0.71-0.66 (m, 3H). LCMS Rt = 1.212 mm in 2 mmchromatography, 30-9OAB_2MIN_E.M, MS ESI calcd. for C31H5102 [M+H-H2Oj 455, found455., 1768-64-5

As the paragraph descriping shows that 1768-64-5 is playing an increasingly important role.

Reference£º
Patent; SAGE THERAPEUTICS, INC.; SALITURO, Francesco, G.; ROBICHAUD, Albert, Jean; MARTINEZ BOTELLA, Gabriel; HARRISON, Boyd, L.; (157 pag.)WO2017/7840; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 4295-99-2

4295-99-2, The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

4295-99-2, 4-Cyanotetrahydro-4H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of tetrahydro-2H-pyran-4-carbonitrile (2 g, 18.00 mmol) in tetrahydrofuran (10 mL) at 0 – 5 C was added slowly LHMDS (21.59 mL, 21.59 mmol). The mixture was stirred for 1.5 hrs at 0 C. lodomethane (3.37 mL, 54.0 mmol) was added slowly and stirring was continued for 30 min at ~0 C and then for ~2 hrs at room temperature. The mixture was cooled to 0 C and carefully diluted with IN aqueous hydrochloride solution (30 mL) and EtOAc (5 mL) and concentrated under reduced pressure. The residue was taken up in diethylether and the separated organic layer was washed with brine, dried over sodium sulfate, filtered off and concentrated under reduced pressure providing crude 4-methyltetrahydro-2H-pyran-4-carbonitrile (1.8 g) as an orange oil, which was directly used in the next reaction without further purification. LCMS (m/z): 126.1 [M+H]+; Retention time = 0.44 min.

4295-99-2, The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; NOVARTIS AG; ANTONIOS-MCCREA, William R.; BARSANTI, Paul A.; HU, Cheng; JIN, Xianming; MARTIN, Eric J.; PAN, Yue; PFISTER, Keith B.; SENDZIK, Martin; SUTTON, James; WAN, Lifeng; WO2012/66065; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 101691-94-5

As the paragraph descriping shows that 101691-94-5 is playing an increasingly important role.

101691-94-5, 4-(Iodomethyl)tetrahydro-2H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 1-bromo-4-(ethylsulfonyl)benzene (1.50 g) in 1,4-dioxane (20 mL) were added diethyl malonate (1.16 g), potassium phosphate (3.84 g), biphenyl-2-yl(di-tert-butyl)phosphine (108 mg) and palladium acetate (II) (40 mg). The reaction solution was purged with argon, and the mixture was heated under reflux for 12 hr. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The extract was washed successively with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate:hexane = 10:90 – 50:50, volume ratio) to give a colorless oil. A solution of the obtained oil in N,N-dimethylformamide (20 mL) was purged with nitrogen, sodium hydride (60%, oil, 213 mg) was added under ice-cooling, and the mixture was stirred at 0C for 15 min. To the reaction solution was added a solution of 4-(iodomethyl)tetrahydro-2H-pyran (1.15 g) in N,N-dimethylformamide (10 mL) at 0C, and the mixture was stirred for 3 hr at 90C. The reaction mixture was concentrated under reduced pressure, saturated aqueous ammonium chloride solution was added to the residue, and the mixture was extracted with ethyl acetate. The extract was washed successively with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by basic silica gel column chromatography (ethyl acetate:hexane = 10:90 – 40:60, volume ratio) to give a colorless oil. To a solution of the obtained oil in a mixed solvent of tetrahydrofuran (40 mL) and methanol (20 mL) was added 2M aqueous sodium hydroxide solution (10 mL), and the mixture was stirred at 60C for 3 hr. The reaction solution was cooled to room temperature, and acidified with 1M hydrochloric acid, and the mixture was extracted with ethyl acetate. The extract was washed successively with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was recrystallized from hexane-ethyl acetate to give the title compound (1.33 g, yield 67%) as colorless crystals. MS:327(MH+). Reference Example 67 4-[4-(ethylsulfonyl)phenyl]-5-(tetrahydro-2H-pyran-4-yl)pent-1-en-3-one, 101691-94-5

As the paragraph descriping shows that 101691-94-5 is playing an increasingly important role.

Reference£º
Patent; Takeda Pharmaceutical Company Limited; EP2149550; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 1228779-96-1

As the paragraph descriping shows that 1228779-96-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1228779-96-1,3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide,as a common compound, the synthetic route is as follows.

EXAMPLE 1F (128 mg), EXAMPLE 1G (73 mg), 1-ethyl-3-(3-(dimethylamino)propyl)-carbodiimide hydrochloride (88 mg), and 4-dimethylaminopyridine (28 mg) were stirred in CH2Cl2 (3 mL) for 24 hours. The mixture was cooled and chromatographed on silica gel with 0-10% methanol/ethyl acetate. 1H NMR (300 MHz, DMSO-d6) delta 11.15 (br s, 1H), 8.63 (dd, 1H), 8.49 (d, 1H), 7.80 (dd, 1H), 7.44-7.53 (m, 5H), 7.36 (m, 3H), 7.22 (m, 3H), 7.01 (s, 1H), 6.92 (d, 1H), 6.78 (d, 1H), 6.44 (s, 1H), 4.17 (m, 2H), 3.86 (dd, 2H), 3.33 (m, 6H), 3.16 (m, 4H), 2.66 (s, 6H), 2.37 (br s, 4H), 1.91 (m, 1H), 1.63 (d, 2H), 1.29 (m, 2H)., 1228779-96-1

As the paragraph descriping shows that 1228779-96-1 is playing an increasingly important role.

Reference£º
Patent; ABBOTT LABORATORIES; US2010/160322; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 287193-07-1

As the paragraph descriping shows that 287193-07-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.287193-07-1,Ethyl 4-oxotetrahydro-2H-pyran-2-carboxylate,as a common compound, the synthetic route is as follows.

To a solution of 4-oxo-tetrahydro-2H-pyran-2-carboxylic acid ethyl (0.6 g, 3.5 mmol) in absolute ethanol (6 ml) was added sulfur (0.12 g, 3.85 mmol) and tert-butyl cyanoacetate (0.64 g, 4.55 mmol). The solution was stirred under nitrogen in a 50 C. oil bath and morpholin (0.61 ml, 7.0 mmol) was added. The reaction was stirred for 18 hours and then cooled to ambient temperature and excess sulfur removed by filtration. The filtrate was concentrated in vacuo and reconstituted in ethyl acetate (50 ml). The organic phase was washed with brine (2*10 ml), dried (Na2SO4), filtered, and the solvent evaporated in vacuo. The residue was purified by silica gel chromatography using a gradient of ethyl acetate/hexane (20 to 25% gradient) as eluent. Pure fraction of the two isomers were collected and the solvent evaporated in vacuo which afforded 0.47 g of 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,5-dicarboxylic acid 3-tert-butyl ester 5-ethyl ester (A) and 0.3 g of 2-amino-4,7-dihydro-5H-thieno[2,3-c]pyran-3,7-dicarboxylic acid 3-tert-butyl ester 7-ethyl ester (B) in 62% combined yield. (A)1H-NMR (300 MHz, CDCl3) delta 5.96 (bs, 2H), 4.77-4.61 (m, 2H), 4.32-4.18 (m, 3H), 3.19-3.12 (m, 1H), 2.90-2.80 (m, 1H), 1.52 (s, 9H), 1.29 (t, 3H, J=7 Hz).(B)1H-NMR (300 MHz, CDCl3) delta 5.10 (s, 1H), 4.28-4.13 (m, 3H), 3.98-3.91 (m, 1H), 2.82-2.76 (m, 2H), 1.51 (s, 9H), 1.31 (t, 3H, J=7 Hz)., 287193-07-1

As the paragraph descriping shows that 287193-07-1 is playing an increasingly important role.

Reference£º
Patent; Novo Nordisk A/S; US7019026; (2006); B1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 101691-65-0

The synthetic route of 101691-65-0 has been constantly updated, and we look forward to future research findings.

101691-65-0, (Tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of 5-bromo-2-chloropyridin-3-amine (1 .3 g, 6.27 mmol) in DMF (20 mL) was added slowly sodium hydride (60 wt.% in mineral oil, 0.301 g) was stirred for 20 min, followed by addition of (tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate (1.694 g, 6.27 mmol). The resulting reaction mixture was stirred at room temperature for 58 hrs, diluted with EtOAc, washed with water, brine, dried over sodium sulphate, filtered off and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, EtOAc/hexane = 22/78) providing 5-bromo-2-chloro-N-((tetrahydro-2H-pyran-4- yl)methyl)pyridin-3-amine (1 .27 g). LCMS (m/z): 305.0 [M+H]+; Rt = 0.89 min., 101691-65-0

The synthetic route of 101691-65-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; NOVARTIS AG; BARSANTI, Paul, A.; HU, Cheng; JIN, Xianming; NG, Simon, C.; PFISTER, Keith, B.; SENDZIK, Martin; SUTTON, James; WO2012/101064; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 33821-94-2

As the paragraph descriping shows that 33821-94-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33821-94-2,2-(3-Bromopropoxy)tetrahydro-2H-pyran,as a common compound, the synthetic route is as follows.

To a mixture of 4-iodo-lH-pyrazole (2.0 g, 10.3 mmol) and Cs2CO3 (5.04 g, 15.5 mmol) in MeCN (28 mL) was added 2-(3- bromopropoxy)tetrahydro-2H-pyran (1.84 mL, 10.8 mmol) and the mixture stirred at T overnight. The crude reaction mixture was poured into water and extracted with EtOAc (x 3). The combined organic layers were washed with brine, dried (MgSO4) and concentrated in vacuo. The resulting residue was purified by FCC, using a gradient of 0-80% EtOAc in cyclohexane, to give the title compound (2.95 g, 81%). NMR (300 MHz, CDC13): 150- 1.58 (4H, m), 1.65-1.90 (2H, m), 2.12 (2H, qn, J = 6.4 Hz), 3.35 (1H, dt, J = 10.2, 5.9 Hz), 3.46-3.54 (1H, m), 3.73 (1H, dt, J = 10.2, 5.9 Hz), 3.80-3.88 (1H, m), 4.26 (2H, td, J = 6.9, 1.5 Hz), 4.54 (1H, dd, J = 4.5, 3.1 Hz), 7.46 (1H, s), 7.50 (1H, s)., 33821-94-2

As the paragraph descriping shows that 33821-94-2 is playing an increasingly important role.

Reference£º
Patent; CHIESI FARMACEUTICI S.P.A.; ALCARAZ, Lilian; PANCHAL, Terry Aaron; JENNINGS, Andrew Stephen Robert; CRIDLAND, Andrew Peter; HURLEY, Christopher; WO2014/194956; (2014); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 1228779-96-1

As the paragraph descriping shows that 1228779-96-1 is playing an increasingly important role.

1228779-96-1, 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Compound 12-5 is dissolved in a mixed solvent of EtOH:H 2 O=3:2,(2 eq) lithium hydroxide was added and stirred at room temperature overnight.After the reaction is completed, the reaction solution is spun dry, and a small amount of water is added to dissolve.Then, after adjusting to pH=6 with 1 M aqueous HCl solution, a white solid precipitated.The compound 12-6 was obtained by suction filtration.Synthesis of Compound S12:Compound 12-6 was dissolved in dichloromethane, (3 eq) EDCI, (0.3 eq) DMAP was added, and stirred at room temperature for half an hour, then compound 1-5 (0.8 eq) was added, followed by room temperature reaction for 6-8 hours. After the reaction is completed, the reaction is quenched with water, and the mixture is extracted three times with dichloromethane. The organic phase is washed with saturated brine and dried over anhydrous sodium sulfateCH2Cl2: MeOH = 100:1 – 30:1 gave compound S12., 1228779-96-1

As the paragraph descriping shows that 1228779-96-1 is playing an increasingly important role.

Reference£º
Patent; Chinese Academy Of Sciences Shanghai Pharmaceutical Institute; Zhang Ao; Tan Wenfu; Liu Xiaohua; Huang Wenjing; Zhang Yu; Yang Jun; (37 pag.)CN110143974; (2019); A;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 2081-44-9

2081-44-9, As the paragraph descriping shows that 2081-44-9 is playing an increasingly important role.

2081-44-9, Tetrahydro-2H-pyran-4-ol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

At -10 C Tetrahydro-2H-pyran-4-ol (3.54 g, 34.66 mmol),Triethylamine (4.65 g, 45.95 mmol) MsCl (4.61 g, 40.24 mmol) was added to a solution of DCM (100 mL). After stirring for 30 minutes,The reaction was diluted with water (100 mL).The combined organic phases were washed with brine (1¡Á50 mL).Dry with anhydrous Na2SO4,Filter and concentrate under reduced pressure.Tetrahydro-2H-pyran-4-yl methanesulfonate (6.74 g) was obtained.

2081-44-9, As the paragraph descriping shows that 2081-44-9 is playing an increasingly important role.

Reference£º
Patent; Beijing Jiakesi Drug Discovery Co., Ltd.; Ma Cunbo; Gao Panliang; Hu Shaojing; Xu Zilong; Han Huifeng; Wu Xinping; Kang Di; Long Wei; (147 pag.)CN110143949; (2019); A;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics