Some tips on 29943-42-8

29943-42-8, As the paragraph descriping shows that 29943-42-8 is playing an increasingly important role.

29943-42-8, Dihydro-2H-pyran-4(3H)-one is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Tetrahydropyran-4-one (7.5 g, 75 mmol, 1 equiv.) in MeOH (75 mL) was cooled to 0 C. NaBH4 (1.425 g, 37.5 mmol, 0.5 equiv.) was added in portions at 0 C. The mixture was heated to RT and stirred for 1 h at RT. MeOH was distilled off and the mixture was diluted with iced water, neutralised with acetic acid, and extracted with EA (3¡Á30 mL). The organic phase was concentrated under reduced pressure and the product was obtained as a colourless oil (4.3 g, 56% yield).

29943-42-8, As the paragraph descriping shows that 29943-42-8 is playing an increasingly important role.

Reference£º
Patent; Gruenenthal GmbH; US2012/46301; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 1228779-96-1

1228779-96-1, The synthetic route of 1228779-96-1 has been constantly updated, and we look forward to future research findings.

1228779-96-1, 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of 2-((lH-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4-((6-(4- chlorophenyl)spiro[3.5]non-6-en-7-yl)methyl)piperazin-l-yl)benzoic acid (1.75 g, 3 mmol), 3-nitro-4-(((tetrahy(ko-2H-pyran-4-yl)memyl)amino)benzenesulfonamide (1.43 g, 4.5 mmol), EDCI (1.15 g, 6 mmol) and 4-(N,N-cUmemylamino)pyridine (550 mg, 4.5mmol) and dichloromethane (40 ml) was reacted at room temperature for overnight, followed by adding water. The water layer was extracted with dichloromethane. The combined organic layers were washed with brine, concentrated and purified through silica gel column to afford 2-((lH-pyrrolo[2,3-b]pyridin-5- yl)oxy)-4-(4-((6-(4-chlorophenyl)spiro[3.5]non-6-en-7-yl)methyl)piperazin-l-yl)-N- ((3-nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)phenyl)sulf onyl)benzamide ( 1.7 g, 64.4 %) as yellow solid. 1H NMR (400 MHz, Methanol-^) delta 8.70 (d, / = 2.3 Hz, 1H), 8.01 (d, / = 2.7 Hz, 1H), 7.87 (d, J = 9.2, 2.3 Hz, 1H), 7.66 (d, / = 8.9 Hz, 1H), 7.55 (d, / = 2.7 Hz, 1H), 7.47 (d, / = 3.4 Hz, 1H), 7.38 (d, / = 8.4 Hz, 2H), 7.10 (d, / = 8.4 Hz, 2H), 6.97 (d, / = 9.2 Hz, 1H), 6.77 (dd, / = 8.9, 2.4 Hz, 1H), 6.44 (d, / = 3.4 Hz, 1H), 6.34 (d, / = 2.4 Hz, 1H), 4.02 – 3.94 (m, 3H), 3.66 (s, 3H), 3.49 – 3.38 (m, 2H), 3.41 – 3.25 (m, 7H), 2.42 (s, 3H), 2.26 (s, 3H), 2.00 – 1.67 (m, 4H), 1.45 – 1.38 (m, 2H).

1228779-96-1, The synthetic route of 1228779-96-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; THE REGENTS OF THE UNIVERSITY OF MICHIGAN; WANG, Chia, Wei; CHEN, Jianyong; (131 pag.)WO2018/27097; (2018); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 4295-99-2

The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

4295-99-2, 4-Cyanotetrahydro-4H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

4-(3-Chloropropyl)-tetrahydro-2H-pyran-4-carbonitrile. To a stirred solution of 1 M LiHMDS (25 mL, 25 mmol) in THF (10 mL) at -78 C. was added dropwise a solution of tetrahydro-2H-pyran-4-carbonitrile (2.23 g, 20 mmol) in THF (15 mL) over 10 minutes. After 40 min, 1-chloro-3-iodopropane (2.7 mL, 25 mmol) was added at once, stirred at -78 C. for 1 h and 4 h room temperature. Then the reaction mixture was diluted with ether (100 mL), washed with water (20 mL) and brine (20 mL), dried (Na2SO4), filtered and concentrated to give yellow oil which was purified by flash column chromatography using 10-30% EtOAc/Hexanes to afford the title compound as a colorless liquid (3.74 g, 99%). 1H NMR (500 MHz, CDCl3) delta: 3.97 (2H, dd, J=11.3, 3.7 Hz), 3.71 (2H, td, J=12.2, 1.8 Hz), 3.61 (2H, t, J=6.3 Hz), 2.05-1.98 (2H, m), 1.88 (2H, dd, J=13.4, 1.8 Hz), 1.77-1.74 (2H, m), 1.65-1.59 (2H, m)., 4295-99-2

The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bristol-Myers Squibb Company; US2008/4265; (2008); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 31608-22-7

As the paragraph descriping shows that 31608-22-7 is playing an increasingly important role.

31608-22-7, 2-(4-Bromobutoxy)tetrahydro-2H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

PREPARATION 10 7-tetrahydropyranyloxyhept-2-yne-1-ol (Formula XXII: A is trimethylene). Lithium metal (7.7 g.) is added in small pieces with stirring to a solution of ferric nitrate (300 mg.) in 1 l. of liquid ammonia. The mixture is then stirred under reflux until the blue color is replaced by a pale grey color. Then, a solution of propargyl alcohol (28 g.) in 250 ml. of diethyl ether is added slowly with stirring. After stirring 2 hours under reflux, a solution of 1-tetrahydropyranyloxy-4-bromobutane (118 g.) in 250 ml. of diethyl ether is added slowly with stirring. After stirring 4 hours under reflux, 300 ml. of water and then 300 ml. of diethyl ether are added. The mixture is stirred about 15 hours, the ammonia being allowed to evaporate during that time. The diethyl ether layer is separated, washed with water and with saturated aqueous sodium chloride solution, dried, and evaporated under reduced pressure to give a residue. The residue is chromatographed on 4 kg. of silica gel, eluding with 8 l. 20%, 6 l. 40%, 6 l. 60%, 6 l. 80%, and 9 l. 100% ethyl acetate-Skellysolve B mixtures, collecting 1.5 l. fractions. Fractions 9-12 are combined and evaporated to give 56 g. of 7-tetrahydropyranyloxyhept-2-yne-1-ol., 31608-22-7

As the paragraph descriping shows that 31608-22-7 is playing an increasingly important role.

Reference£º
Patent; The Upjohn Company; US3983155; (1976); A;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 33821-94-2

33821-94-2, The synthetic route of 33821-94-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.33821-94-2,2-(3-Bromopropoxy)tetrahydro-2H-pyran,as a common compound, the synthetic route is as follows.

Example 11; N-Cyclopropyl-3-[N-(2,2-dimethyl-1-oxoindan-5-yl)-N-(3-hydroxypropyl)amino]-4-methylbenzamidea) N-Cyclopropyl-3-[N-(2,2-dimethyl-1-oxoindan-5-yl)-N-(3-(tetrahydropyran-2-yloxy)propyl)amino]-4-methylbenzamideTo a suspension of N-cyclopropyl-3-(2,2-dimethyl-1-oxoindan-5-ylamino)-4-methylbenzamide (0.2 g, 0.57 mmol, obtained in example 2) in dry toluene (6.5 mL), sodium hydride (50 mg, 60% dispersion in oil, 1.14 mmol) and 15-crown-5 (4 mg, 0.02 mmol) were added under argon and the mixture was stirred at room temperature for 20 min. Then, 3-bromopropanol tetrahydropyranyl ether (0.13 g, 0.57 mmol) was added and the mixture was heated at 90 C. overnight. It was allowed to cool and diluted with EtOAc and saturated NaHCO3. The phases were separated and the organic phase was dried over Na2SO4. The solvent was evaporated to afford the desired compound (quantitative yield).LC-MS (method 1): tR=9.74 min; m/z=491.2 [M+H]+.

33821-94-2, The synthetic route of 33821-94-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; PALAU PHARMA, S.A.; US2010/222363; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 2081-44-9

2081-44-9, As the paragraph descriping shows that 2081-44-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2081-44-9,Tetrahydro-2H-pyran-4-ol,as a common compound, the synthetic route is as follows.

Step A: Preparation of tetrahydro-2H-pyran-4-yl methanesulfonate: To a solution of tetrahydro-2H-pyran-4-ol (2.5 g, 24.5 mmol) in DCM (40 mL) was added DIEA (6.40 mL, 36.7 mmol) at 0 C and allowed to stir under nitrogen for 10 minutes. Methane sulfonyl chloride (2.18 mL, 28.1 mmol) was added slowly. The reaction was allowed to proceed for 1 hour at 0 C. The reaction was partitioned between 100 mL of DCM and 50 mL of 0.5 M hydrochloric acid. The layers were separated and the organic layer was then washed sequentially with water, saturated sodium bicarbonate, and brine. The organic layer was dried over MgSO t, filtered, and concentrated under reduced pressure and dried on high vacuum to afford tetrahydro-2H-pyran-4-yl methanesulfonate (4.4 g, 24.4 mmol, 99.7% yield).

2081-44-9, As the paragraph descriping shows that 2081-44-9 is playing an increasingly important role.

Reference£º
Patent; ARRAY BIOPHARMA INC.; BOYS, Mark Laurence; BURGESS, Laurence, E.; GRONEBERG, Robert, D.; HARVEY, Darren, M.; HUANG, Lily; KERCHER, Timothy; KRASER, Christopher, F.; LAIRD, Ellen; TARLTON, Eugene; ZHAO, Qian; WO2011/130146; (2011); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 1768-64-5

As the paragraph descriping shows that 1768-64-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1768-64-5,4-Chlorotetrahydropyran,as a common compound, the synthetic route is as follows.

4-Chlorotetrahydropyran (650 muL, 6.0 mmol) was dissolved in THF (6 mL). Magnesium turnings (2.0 g, 80.7 mmol) was added to the mixture followed by methyl iodide (14 muL, 230 mumol). The mixture was stirred at 30 C. for 10 minutes and additional 4-chlorotetrahydropyran (9.3 g, 77 mmol) diluted in THF (60 mL) was added dropwise. 2.0M Isopropylmagnesium chloride in THF (2.0 mL) was added and the mixture was stirred overnight at 30 C. The mixture was cooled to room temperature to give a grey slurry of 0.8M 4-tetrahydropyranmagnesium chloride in THF., 1768-64-5

As the paragraph descriping shows that 1768-64-5 is playing an increasingly important role.

Reference£º
Patent; STANGELAND, Eric; SCHMIDT, Jane; SAITO, Daisuke Roland; HUGHES, Adam; PATTERSON, Lori Jean; US2011/21597; (2011); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 25637-16-5

25637-16-5 4-Bromotetrahydropyran 13349654, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.25637-16-5,4-Bromotetrahydropyran,as a common compound, the synthetic route is as follows.

To a solution of 4-bromopyridin-2-ol (1 g, 5.75 mmol) in DMF (10 mL), stirring at rt, was added, potassium fert-butoxide (0.677 g, 6.03 mmol) . The mixture was stirred for 30 min then 4- bromotetrahydro-2H-pyran ( 1.423 g, 8.62 mmol) was added, and the resulting mixture was stirred at 70 C for 2 h. The mixture was cooled to rt, diluted with EtOAc (50 mL) and quenched with water (20 mL). The organic layer was washed with water (2×20 mL), brine (20 mL), dried over anhydrous MgS04 and filtered. The filtrate was concentrated in vacuo to afford the title compound (0.13 g, 9%); LC/MS (Table 1, Method f) Rt = 0.74 min; MS m/z: 258, 260 (M+H)+., 25637-16-5

25637-16-5 4-Bromotetrahydropyran 13349654, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; ABBVIE INC.; BREINLINGER, Eric, C.; COX, Phil, B.; DAANEN, Jerome; DIETRICH, Justin; DJURIC, Stevan; DOMBROWSKI, Amanda, W.; FRANK, Kristine, E.; FRIEDMAN, Michael, M.; GOMTSYAN, Arthur; LI, Huan-Qui; LONGENECKER, Kenton; OSUMA, Augustine; ROWLEY, Ann, Marie; SCHMIDT, Robert; VASUDEVAN, Anil; WILSON, Noel; (378 pag.)WO2016/168641; (2016); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 19752-84-2

As the paragraph descriping shows that 19752-84-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.19752-84-2,Tetrahydro-2H-pyran-3-ol,as a common compound, the synthetic route is as follows.

To a stirring solution of carbonyl carbonyldiimidazole (0.15 g, 0.93) in THF (4 mL) under an atmosphere of nitrogen was added 2-tetrahydropyran-4-ol (0.09 g, 0.93 mmol) at 5C. The resulting mix was stirred at room temperature for one hour and then added to a stirring mix of [4-[5-(trifluoromethyl)-1,2,4-oxadiazol-3-yl]phenyl]methanamine hydrochloride (0.26 g, 0.93 mmol) and DBU in tetrahydrofuran (2 mL). The reaction mixture was allowed to react for 18 hours at room temperature then poured onto water and extracted with ethyl acetate. The combined organic layers were, dried over sodium sulfate, and filtered. The solvent was removed under reduced pressure and the resultant crude residue was purified by reverse phase high pressure liquid chromatography to afford 0.13 g of the titled compound as a yellow oil. LC/MS (Method A) retention time = 1.01 minutes, minutes, 372 (M+H). 1NMR (400 MHz, CDCIs) delta ppm: 8.1 1 (d, 2H), 7.45 (d, 2H), 5.10 (sbr, 2H), 4.89 (m, 2H), 4.47 (d,2H), 3.92 (m, 2H), 3.34 (m, 2H), 1.97 (m, 2H), 1 .69 (m, 2H). 19F NMR (400 MHz, CDCI3) delta ppm: -65.34 (s)., 19752-84-2

As the paragraph descriping shows that 19752-84-2 is playing an increasingly important role.

Reference£º
Patent; SYNGENTA PARTICIPATIONS AG; HOFFMAN, Thomas, James; STIERLI, Daniel; BEAUDEGNIES, Renaud; POULIOT, Martin; (88 pag.)WO2017/103223; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 19752-84-2

The synthetic route of 19752-84-2 has been constantly updated, and we look forward to future research findings.

19752-84-2, Tetrahydro-2H-pyran-3-ol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 3-hydroxytetrahydropyrane (1 .8 mL, 19.58 mmol) in toluene (30 mL), under nitrogen, was added triphenylphosphine (7.7 g, 29.37 mmol) and di-tertbutylazodicarboxylate (5.4 g, 23.50 mmol). The reaction mixture was stirred at RT for 60 h. The reaction mixture was concentrated then suspended in MeOH (55 mL), followed by addition of a hydrogen chloride solution (4 M in dioxane, 39.17 mL, 156.7 mmol). The reaction mixture was stirred at RT for 16 h, filtered, and the filtrate was concentrated under reduced pressure. EtOAc was then added to the resulting residue followed by filtration. The solid collected was washed with EtOAc to afford titled compound (2.99 g, 19.58 mmol, assumed quantitative yield) as a yellow solid.1H NMR (400 MHz, DMSO-d6, ): 3.91-3.82 (m, 1H), 3.76-3.58 (m, 1H), 3.45-3.29 (m,2H), 3.04-2.94 (m, 1 H), 2.00-1.90 (m, 1 H), 1.77-1.65 (m, 1 H), 1.62-1.37 (m, 2H)., 19752-84-2

The synthetic route of 19752-84-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; REDX PHARMA PLC; GUISOT, Nicolas; (266 pag.)WO2017/103611; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics