Brief introduction of 1228779-96-1

As the paragraph descriping shows that 1228779-96-1 is playing an increasingly important role.

1228779-96-1, 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1228779-96-1, A mixture of dichloromethane (12.0 L), 2-((lH-pyrrolo[2,3-b]pyridin-5-yl)oxy)-4-(4- ((4′-chloro-5,5-dimethyl-3,4,5,6-tetrahydro[l,r-biphenyl]-2-yl)methyl) piperazin-l- yl)benzoicacid hydrochloride (600.0 g), triethylamine (299.79 g), 4- dimethylaminopyridine (180.97 g), 3-nitro-4-(((tetrahydro-2H-pyran-4- yl)methyl)amino)benzenesulfonamide (342.56 g) and N-(3-Dimethylaminopropyl)-N’- ethylcarbodiimide hydrochloride (283.97 g) was stirred at 25 to 30 degree Celsius for 8h. The reaction mixture was treated with N,N-dimethylethylenediamine (217.63 g) at 20 to 30 degree Celsius and stirred for 4h. The organic layer was washed with water (6.0 L) and concentrated under vacuum. The residue was dissolved in dichlo methane- methanol mixture (1:5) (7.2 L) and treated with acetic acid-methanol mixture (415.11 g acetic acid and 600 mL methanol) and stirred at 20 to 30 degree Celsius. The resulting slurry was cooled to 0 to 5 degree Celsius, filtered and washed with methanol (600 mL). The solid was dissolved in (9:1) mixture of dicloromethane-methanol (4.8 L) at 35 to 45 degree Celsius, diluted with methanol (1680 mL) and stirred for 8h at 20 to 30 degree Celsius. The resulting slurry was cooled to 0 to 5 degree Celsius, filtered, washed with methanol (600 mL) and the solid was dried under vacuum at 60 to 65 degree Celsius for 18 h to provide 4-(4-{ [2-(4-chlorophenyl)-4,4-dimethylcyclohex-l-en-l-yl]methyl}- piperazin-l-yl)-N-({3-nitro-4[(tetrahydro-2H-pyran-4ylmethyl)amino]- phenyl} sulfonyl)-2-(lH-pyrrolo[2,3-b]pyridin-5-yloxy)benz amide. Yield: 70.0% (600g) HPLC Purity: -99.9% 1H NMR data-(DMSO-d6): d 0.921 (s, 6H), 1.204-1.308, 1.598-1.626 (m, d, J=l l.2Hz, 4H), 1.382 (t, J=6.4Hz, 4H), 1.883 (m, 1H), 1.951 (s, 2H), 2.144 (t, br, 2H), 2.199 ( s, br, 4H), 2.754 (s, 2H), 3.073 (s, br, 4H), 3.237-3.291, 3.829-3.865 (m, dd, J=2.8, 3.2, 11.2, l l.6Hz, 6H), 6.189 (d, J=2.0Hz, 1H), 6.388 (dd, J=2.0, 3.6Hz, 1H), 6.678 (d, J=2.0, 2.4, 9.2, 9.6Hz, 1H), 7.037 (d, J=8.8Hz, 2H) 7.11 (d, J=9.2Hz, 1H), 7.34 (d, J=8.0Hz, 2H), 7.495 (m, 2H), 7.535 ( d, J=2.4Hz, 1H), 7.801 (dd, J=2.0, 2.4, 8.8, 9.2Hz, 1H), 8.038 (d, J=2.0Hz, 1H), 8.558 (d, J=2.4Hz, 1H), 8.598 (t, 1H), 11.366 (s, br, 1H), 11.679 (s, 1H).

As the paragraph descriping shows that 1228779-96-1 is playing an increasingly important role.

Reference£º
Patent; FRESENIUS KABI ONCOLOGY LTD.; GUPTA, Chandan Kumar; DHIMAN, Navdeep; SANGHANI, Sunil; SINGH, Govind; LAHIRI, Saswata; CABRI, Walter; GUPTA, Nitin; (0 pag.)WO2020/3272; (2020); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 185815-59-2

The synthetic route of 185815-59-2 has been constantly updated, and we look forward to future research findings.

185815-59-2, 4-Isobutyldihydro-2H-pyran-2,6(3H)-dione is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 1: Preparation of (3R)-5-methyl-3-r2-oxo-2{rdR)-l-phenylethyl]amino|ethyl) hexanoic acid compound (24*); [0075] A three-necked flask equipped with an addition funnel, thermometer pocket , drying tube and a mechanical stirrer, was charged with toluene (400 ml), (R)-(+)- EPO phenylethylamine (38.59 g, 0.0.319 mole) and 4-dim’ethylaminopyridine (0.358 g, 0.0029 mole). The mixture was cooled to a temperature of -50C to -60C, followed by addition of a solution of 3-isobutyl glutaric anhydride (50 g, 0.294 mole) in toluene (100 ml), over a period of 45-60 minutes, and stirring for additional 1.5-2 hours, at a temperature of -50C to -60C. The mixture was then extracted with 3.5-4.0 percent aqueous solution of NaOH (1000 ml), and the aqueous phase was washed with toluene (1 x 250 ml). The pH of the aqueous phase was adjusted to 2-2.5 by adding a solution hydrochloric acid (1-12N). The aqueous phase was further extracted with ethyl acetate (1 x 300 ml and 1 x 100 ml), followed by drying the combined ethyl acetates extracts over anhydrous sodium sulfate, and stripping off the solvents to obtain a residue. The residue was crystallized from ethyl acetate and toluene mixture to get 66 g (77.2 percent yield) of a white solid of (3R)-5-methyl-3-(2-oxo-2-{[(lR)- 1-phenylethyl] amino} ethyl) hexanoic acid with an optical purity of 99.91 percent, as measured by chiral HPLC.; Example 12: Preparation of r3RV5-me1hyl-3-f2-oxo-2(rriRVl-phenyle1hyl1ainino)ethyl’) hexanoic acid compound (24*); [0086] A three-necked flask equipped with an addition funnel, thermometer pocket, drying tube and a mechanical stirrer, was charged with toluene (100 ml), (R)-(+)- phenylethylamine (35.58 g, 0.147mole) and 4-dimethylaminopyridine (0.18 g, 0.00147 mole). The mixture was cooled to a temperature of 0-5C, followed by addition of a solution of 3-isobutyl glutaric anhydride (25 g, 0.147 mole) in toluene (25 ml), over a period of 15-20 minutes, and stirring for additional 1.5-2 hours, at a temperature of 0-5 C. The mixture was then extracted with 2.5-3 percent aqueous solution of NaOH solution (500 ml), and the aqueous phase was washed with toluene (1 x 50 ml). The pH of the aqueous phase was adjusted to 2-2.5 by adding a 1-12N solution of hydrochloric acid. The aqueous phase was further extracted with ethyl acetate (1 x 150 ml and 1 x 50 ml), followed by drying the combined ethyl acetates extracts over anhydrous sodium sulfate, and stripping off the solvents, to obtain a residue. The residue was crystallized from ethyl acetate and toluene mixture to get 29.3 g (68.5 percent yield) of a white solid of (3R)-5-methyl-3-(2-oxo-2- {[(lR)-l-phenylethyl]amino}ethyl)hexanoic acid with an optical purity of 99.34 percent, as measured by chiral HPLC., 185815-59-2

The synthetic route of 185815-59-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; TEVA PHARMACEUTICAL INDUSTRIES LTD.; TEVA PHARMACEUTICALS USA, INC.; WO2007/35789; (2007); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 14774-36-8

14774-36-8, 14774-36-8 (Tetrahydropyran-3-yl)methanol 85769, aTetrahydropyrans compound, is more and more widely used in various.

14774-36-8, (Tetrahydropyran-3-yl)methanol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

3.4 3-Tetrahydropyranylmethyl mesylate 4 g of 3-hydroxymethyltetrahydropyran are dissolved in 10 ml of dichloromethane, then 4.12 g of triethylamine are added, the mixture is cooled to a temperature between 0 and -5 C. and a mixture of 2.9 ml of mesyl chloride and 100 ml of dichloromethane is added dropwise. When the addition is complete, the mixture is allowed to warm to room temperature and is left at this temperature for 45 min. The organic phase is then washed with water until neutral, dried over sodium sulphate and filtered, and the solvent is evaporated off. 5.9 g of product are obtained in the form of an oil.

14774-36-8, 14774-36-8 (Tetrahydropyran-3-yl)methanol 85769, aTetrahydropyrans compound, is more and more widely used in various.

Reference£º
Patent; Synthelabo; US5525619; (1996); A;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 85064-61-5

The synthetic route of 85064-61-5 has been constantly updated, and we look forward to future research findings.

85064-61-5, Tetrahydropyranyl-4-acetic acid is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

85064-61-5, To a solution of tetrahydro-2H-pyran-4-ylacetic acid (35 mg) (available from Anichem) in DMF (1 ml) was added HATU (92 mg) and the mixture stirred at RT for 10 min when 6- (1 H-indol-4-yl)-1 H-indazol-4-amine (50 mg) and DIPEA (0.070 ml) were added and the mixture allowed to stand for 18 h. The mixture was blown to dryness under a stream of nitrogen and purified by MDAP (method A) to afford the title compound as a white solid, 16 mg.LCMS (method A); Rt = 2.1 min, MH+ = 375.

The synthetic route of 85064-61-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; GLAXO GROUP LIMITED; BALDWIN, Ian Robert; DOWN, Kenneth David; FAULDER, Paul; GAINES, Simon; HAMBLIN, Julie Nicole; JONES, Katherine Louise; JONES, Paul Spencer; LE, Joelle; LUNNISS, Christopher James; PARR, Nigel James; RITCHIE, Timothy John; ROBINSON, John Edward; SIMPSON, Juliet Kay; SMETHURST, Christian Alan Paul; WO2011/67365; (2011); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 1194-16-7

1194-16-7, The synthetic route of 1194-16-7 has been constantly updated, and we look forward to future research findings.

1194-16-7, 2,2-Dimethyltetrahydropyran-4-one is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a suspension of (methoxymethyl)triphenylphosphonium chloride (20.06 g, 58.5 mmol) in THF (1 L) was added NaHMDS (58.5 mL, 1.0 M in THF) at -40 and stirred for 30 min, then 2,2-dimethyldihydro-2H-pyran-4(3H)-one (5 g, 39.0 mmol) in THF (20 mL) was added to the mixture at -40 . After addition, the mixture was warmed to 10 and stirred for 2 h. The mixture was quenched with saturated NH4Cl (300 mL ¡Á 2) and extracted with DCM (200 mL ¡Á 2). The combined organic layers were washed with brine (600 mL), dried over sodium sulfate and concentrated in vacuo to give the crude product. Chromatography over silica gel column eluted with (petroleum ether: EtOAc30: 1) to give the desired product as an oil.1HNMR(400MHz, CDCl3) G 5.92 (s, 0.4H) , 5.76 (s, 0.6H) , 3.61 -3.70 (m, 2H) , 3.49 -3.58 (m, 3H) , 2.23 (t, J5.5Hz, 1.3H) , 2.15 (s, 0.7H) , 1.99 (t, J5.5Hz, 0.7H) , 1.90 (s, 1.3H) , 1.13 -1.22 (m, 6H)

1194-16-7, The synthetic route of 1194-16-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; MERCK SHARP & DOHME CORP.; ARASAPPAN, Ashok; BUNGARD, Christopher James; FRIE, Jessica L.; HAN, Yongxin; HOYT, Scott B.; MANLEY, Peter J.; MEISSNER, Robert S.; PERKINS, James; SEBHAT, Iyassu K.; WILKENING, Robert R.; (140 pag.)WO2016/29454; (2016); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 2081-44-9

As the paragraph descriping shows that 2081-44-9 is playing an increasingly important role.

2081-44-9, Tetrahydro-2H-pyran-4-ol is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 1: Methanesulfonic acid tetrahydro-pyran-4-yl ester To a solution of tetrahydro-2H-pyran-4-ol (25 g, 245 mmol) and triethyl amine (40.1 ml, 294 mmol) in CH2Cl2 (500 ml) at 0 C. was added dropwise methanesulfonylchloride (20.7 ml, 269 mmol) over a period of 40 min, keeping the temperature between 0-4 C. The reaction mixture was then allowed to stir at 0 C. for 1 hr. The cooling bath was removed and the mixture was stirred for another 90 mins at 25 C. The mixture was washed with water (2*125 ml), dried over anhydrous Na2SO4, filtered and concentrated under vacuum to get methanesulfonic acid tetrahydro-pyran-4-yl ester (38 g, 86%; crude) as liquid that was used in the next step without any further purification., 2081-44-9

As the paragraph descriping shows that 2081-44-9 is playing an increasingly important role.

Reference£º
Patent; Hoffmann-La Roche Inc.; GROEBKE ZBINDEN, Katrin; PINARD, Emmanuel; RYCKMANS, Thomas; (19 pag.)US2016/326144; (2016); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 103260-44-2

103260-44-2, 103260-44-2 Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate 2773412, aTetrahydropyrans compound, is more and more widely used in various.

103260-44-2, Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Intermediate 32: 2-(Tetrahydro-2/-/-pyran-4-yl)ethanolTo an ice-cold solution of lithium aluminium hydride (12.6 ml, 2.3M solution in tetrahydrofuran) in dry tetrahydrofuran (20 ml) and under nitrogen, was added a solution of ethyl tetrahydro-2/-/-pyran-4-yl acetate (5g) in dry tetrahydrofuran dropwise over 10 minutes. Following the addition the reaction was heated to reflux, overnight. The reaction was cooled and diluted with diethyl ether (100 ml). A 5M aqueous solution of sodium hydroxide (-10 ml) was added cautiously to the reaction mixture until the effervescence ceased. The formed white precipitate was filtered off. The resulting filtrate was dried over potassium carbonate, filtered and concentrated in vacuo. This yielded the title compound as a colourless oil (3.3g). MS calcd for (C7H14O2)” = 130 MS found (electrospray): (M+H)+ = 1311 H NMR (DMSO): 4.35 (1 H, t), 3.80 (2H, m), 3.43 (2H, m), 3.25 (2H, m), 1.60 (1 H, m), 1.54 (2H, m), 1.35 (2H, m), 1.13 (2H, m).

103260-44-2, 103260-44-2 Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate 2773412, aTetrahydropyrans compound, is more and more widely used in various.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2008/101867; (2008); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 4677-20-7

4677-20-7, The synthetic route of 4677-20-7 has been constantly updated, and we look forward to future research findings.

4677-20-7, 4-(2-Bromoethyl)tetrahydropyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 56A Di-tert-butyl [2-(4-oxo-1,2,3-benzotriazin-3(4H)-yl)ethyl](2-oxo-2-{6-[2-(tetrahydro-2H-pyran-4-yl)ethoxy]-1-benzofur-3-yl}ethyl)malonate To a mixture of 200 mg (0.36 mmol) of the compound from Example 55A in 0.75 ml of DMF under argon were added, at RT, 45 mg (0.40 mmol) of potassium tert-butoxide and, after stirring for 5 min at RT, 86 mg (0.44 mmol) of 4-(2-bromoethyl)tetrahydro-2H-pyran, dissolved in 0.25 ml of DMF. The mixture was stirred at a bath temperature of 70 C. for 1.5 h. After cooling to RT, in each case 50 ml of water and ethyl acetate were added, and after phase separation, the aqueous phase was extracted once with 50 ml of ethyl acetate. The combined organic phases were dried over sodium sulphate, filtered and concentrated. The residue was taken up in dichloromethane and purified by column chromatography (40 g of silica gel, mobile phase cyclohexane/ethyl acetate 7:3). 158 mg (63% of theory, purity 95%) of the title compound were obtained. 1H-NMR (400 MHz, CDCl3): delta [ppm]=8.31-8.27 (m, 2H), 8.08 (d, 1H), 8.02 (d, 1H), 7.91-7.86 (m, 1H), 7.77-7.71 (m, 1H), 6.99 (d, 1H), 6.94 (dd, 1H), 4.59-4.53 (m, 2H), 4.05 (t, 2H), 3.98 (dd, 2H), 3.64 (s, 2H), 3.42 (td, 2H), 2.73-2.67 (m, 2H), 1.88-1.74 (m, 3H), 1.72-1.64 (m, 2H), 1.47 (s, 18H), 1.41-1.33 (m, 2H). LC/MS (Method 1, ESIpos): Rt=1.49 min, m/z=676 [M+H]+.

4677-20-7, The synthetic route of 4677-20-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; BAYER PHARMA AKTIENGESELLSCHAFT; BECK, Hartmut; LI, Volkhart Min-Jian; CANCHO GRANDE, Yolanda; TIMMERMAN, Andreas; BROHM, Dirk; JOeRIssEN, Hannah; BOGNER, Pamela; GERISCH, Michael; LANG, Dieter; (120 pag.)US2017/121315; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 25637-16-5

As the paragraph descriping shows that 25637-16-5 is playing an increasingly important role.

25637-16-5, 4-Bromotetrahydropyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A dry 50 mL flask was charged with magnesium (173 mg, 7.13 mmol) and a crystal of iodine. Under nitrogen, the solids were stirred vigorously while being warmed with the heat gun to aerosolize the iodine. Upon cooling to room temperature, it was treated with THF (4 mL). The mixture was warmed with a heat gun and treated with a solution of 4-bromotetrahydro-2H-pyran (0.530 mL, 4.76 mmol) in THF (4 mL) dropwise via a dry addition funnel. When addition was complete, the mixture was placed in a preheated oil bath, and the mixture held at reflux for 30 min. After cooling to room temperature, the solution was transferred to a stirred solution of 2-cyclopropylacetaldehyde (400 mg, 2.38 mmol) in THF (4 mL) at -78 C. After stirring for 5 min, the ice bath was removed, and the reaction allowed to warm to room temperature. The reaction was placed in a 0 C. bath and quenched by the cautious addition of sat. aq. NH4Cl (4 mL). The reaction was diluted with EtOAc and poured into brine (10 mL). The layers were separated, and the aqueous was extracted with a second portion of EtOAc. The resulting organics were dried over magnesium sulfate, filtered, and concentrated to give product (410 mg, quant.) as near colorless oil, which was used without purification. 1H NMR (400 MHz, DMSO-d6) delta 4.03-4.0 (m, 2H), 3.54-3.35 (m, 3H), 1.51-1.34 (m, 4H), 0.8 (m, 1H), 0.59-0.46 (m, 2H), 0.19-0.05 (m, 2H)., 25637-16-5

As the paragraph descriping shows that 25637-16-5 is playing an increasingly important role.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; Norris, Derek J.; Delucca, George V.; Gavai, Ashvinikumar V.; Quesnelle, Claude A.; Gill, Patrice; O’Malley, Daniel; Vaccaro, Wayne; Lee, Francis Y.; DeBenedetto, Mikkel V.; Degnan, Andrew P.; Fang, Haiquan; Hill, Matthew D.; Huang, Hong; Schmitz, William D.; Starrett, JR., John E.; Han, Wen-Ching; Tokarski, John S.; Mandal, Sunil Kumar; (220 pag.)US2016/176864; (2016); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 141095-78-5

141095-78-5, As the paragraph descriping shows that 141095-78-5 is playing an increasingly important role.

141095-78-5, 2-Bromo-1-(tetrahydro-2H-pyran-4-yl)ethanone is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

[0221] To a stirred solution of 2-chloro-4-(methylamino) pyrimidin-5-ol (3 g, 18.8 mmol) in CH3CN (60 mL) was added cesium carbonate (12.2 g, 37.70 mmol) followed by 2-bromo- (0556) 1- (tetrahydro-2H-pyran-4-yl) ethan-l-one (3.9 g 18.8 mmol) at 0 C and stirred for 1 h. After consumption of the starting materials (monitored by TLC), the reaction was quenched with a sodium carbonate solution (20 mL) and extracted with EtOAc (2 x 20 mL). The combined organic extracts were dried over sodium sulfate, filtered and concentrated in vacuo to afford (0557) 2- ((2-chloro-4-(methylamino) pyrimidin-5-yl) oxy)-l-(tetrahydro-2H-pyran-4-yl) ethan-l- one (2.5 g) as a yellow solid and used without further purification. LC-MS: 286.1 (M+); (column; X-Select CSH C-18 (50 3.0 mm, 3.5 mupiiota); RT 2.86 min. 0.05% Aq TFA: ACN; 0.8 mL/min); TLC: 30% EtOAc:hexanes (Rf. 0.5).

141095-78-5, As the paragraph descriping shows that 141095-78-5 is playing an increasingly important role.

Reference£º
Patent; FORUM PHARMACEUTICALS INC.; BURNETT, Duane, A.; BURSAVICH, Matthew, Gregory; MCRINER, Andrew, J.; WO2015/138689; (2015); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics