Downstream synthetic route of 220641-87-2

The synthetic route of 220641-87-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.220641-87-2,N-Methyltetrahydro-2H-pyran-4-amine,as a common compound, the synthetic route is as follows.

General procedure: To a suspension of 9 (26.6 g, 76.3 mmol) in N,N-dimethylformamide (380 mL) was added 1-amino-2-methyl-propan-2-ol (8.16 g, 91.5 mmol) and triethylamine (31.9 mL, 228 mmol) at 0 C. The reaction mixture was stirred at room temperature for 5.5 h. Then the reaction mixture was diluted with cold water (1000 mL) and the mixture was stirred at room temperature for 1 h. The resulting precipitate was collected and washed with water. The precipitate was triturated with a mixture of diethyl ether and diisopropyl ether (1:1, 60 mL) to give the title compound (27.7 g, 83%) as a tan colored powder., 220641-87-2

The synthetic route of 220641-87-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Koizumi; Tanaka, Yoshihito; Matsumura, Takehiko; Kadoh, Yoichi; Miyoshi, Haruko; Hongu, Mitsuya; Takedomi, Kei; Kotera, Jun; Sasaki, Takashi; Taniguchi, Hiroyuki; Watanabe, Yumi; Takakuwa; Kojima, Koki; Baba, Nobuyuki; Nakamura, Itsuko; Kawanishi, Eiji; Bioorganic and Medicinal Chemistry; vol. 27; 15; (2019); p. 3440 – 3450;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 624734-17-4

The synthetic route of 624734-17-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.624734-17-4,3-Methoxydihydro-2H-pyran-4(3H)-one,as a common compound, the synthetic route is as follows.

624734-17-4, A mixture of the product from Step A (difluoroacetate, 97.45 mg, 0.136 mmol), 3-methoxydihydro-2H-pyran-4(JH)-one (35.4 mg, 0.272 mmol), 4A molecular sieves (60 mg) and TEA (0.19 mL, 1.36 mmol) in DCM (4 mL) was stirred at rt for 2 h, followed by addition of sodium triacetoxyborohydride (46.12 mg, 0.218 mmol). The resulting mixture was stirred at rt overnight. The reaction was quenched by addition of saturated NaHCOs aqueous solution, extracted with DCM, dried over Na2S04. After removal of solvent, the residue was purified by column chromatography (eluent: 5% 7N NH3 in MeOH in DCM) to give the product as a yellow foam. 1H-NMR (400 MHz, CDCI3): delta 1.56 – 2.12 (m, 7 H), 2.31 (br. s., 1 H), 2.55 – 2.67 (m, 1 H), 3.06 – 3.21 (m, 3 H), 3.24 – 4.16 (m, 14 H), 4.71 (br. s., 2 H), 5.12 (s, 2 H), 7.29 – 7.44 (m, 5 H), 7.69 (br. s., 1 H), 8.72 (br. s., 1 H); LC/MS: C3iH37F3N405: m/z 603.0 (M+H).

The synthetic route of 624734-17-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; JANSSEN PHARMACEUTICA NV; CAI, Chaozhong; MCCOMSEY, David F.; SUI, Zhihua; KANG, Fu An; WO2014/14901; (2014); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 29943-42-8

29943-42-8, 29943-42-8 Dihydro-2H-pyran-4(3H)-one 121599, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.29943-42-8,Dihydro-2H-pyran-4(3H)-one,as a common compound, the synthetic route is as follows.

A) tert-butyl 2-(tetrahydro-2H-pyran-4-yl)hydrazinecarboxylate [0431] A solution of tetrahydro-4H-pyran-4-one (2.50 g) and tert-butyl hydrazinecarboxylate (3.47 g) in methanol (10 mL) was stirred at room temperature for 1 hr, and concentrated under reduced pressure. The residue was dissolved in THF (25 mL), acetic acid (4.3 mL) and sodium borohydride (0.525 g) were added thereto, and the mixture was stirred at 0C for 1 hr. To the reaction mixture was added 8N aqueous sodium hydroxide solution, and the mixture was extracted with ethyl acetate. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give the title compound (2.34 g). 1H NMR (300 MHz, CDCl3) delta 1.35-1.54 (11H, m), 1.77 (2H, dd, J = 12.1 Hz, 2.3 Hz), 2.98-3.15 (1H, m), 3.40 (2H, td, J = 11.3 Hz, 2.3 Hz), 3.96 (3H, dt, J = 11.5 Hz, 3.7 Hz), 6.03 (1H, brs).

29943-42-8, 29943-42-8 Dihydro-2H-pyran-4(3H)-one 121599, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Takeda Pharmaceutical Company Limited; NARA, Hiroshi; DAINI, Masaki; KAIEDA, Akira; KAMEI, Taku; IMAEDA, Toshihiro; KIKUCHI, Fumiaki; EP2857400; (2015); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 65412-03-5

As the paragraph descriping shows that 65412-03-5 is playing an increasingly important role.

65412-03-5,With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.65412-03-5,4-(2-Aminoethyl)tetrahydro-2H-pyran,as a common compound, the synthetic route is as follows.

A mixture of Example 512A (50MG, 0.15 mmol) and 2- (TETRAHYDRO-PYRAN-4-YL)- ethylamine (38.3 mg, 0.30 mmol) in dioxane (2.0 mL) was heated 11 hours at 50 C, cooled to room temperature, and concentrated under vacuum. The residue was purified by preparative HPLC to give 30.3 mg (53%) of the desired PRODUCT. 1H NMR (300 MHz, DMSO-d6) 8 10.05 (s, 1H), 8.56 (br s, 1H), 8.16 (s, 1H), 7.70 (d, J=8.5 Hz, 1H), 7.11 (d, J=2.0 Hz, 1H), 7.00-7. 08 (m, 3H), 6.97 (dd, J=2.0, 8.5 Hz, 1H), 4.00-4. 04 (m, 2H), 3.78-3. 86 (m, 2H), 3.20-3. 30 (m, 3H), 2.88-3. 00 (m, 2H), 1.49-1. 58 (m, 4H), 1.11-1. 19 (m, 2H).

As the paragraph descriping shows that 65412-03-5 is playing an increasingly important role.

Reference£º
Patent; ABBOTT LABORATORIES; WO2004/76424; (2004); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 40191-32-0

40191-32-0, As the paragraph descriping shows that 40191-32-0 is playing an increasingly important role.

40191-32-0, Tetrahydro-2H-pyran-4-carbonyl chloride is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Sodium carbonate (15 mg, 0.14 mmol) and tetrahydro-2H-pyran-4-carbonyl chloride (26 mg, 0.18 mmol) were added to mixture of 5-amino-1-(4-chlorobenzyl)-2-(methylthio)pyrimidin-6(1H)-one (33.2 mg, 0.118 mmol) and THF (0.5 mL) under ice-cooling, and stirred under ice-cooling for 2 hours. The reaction mixture was added to saturated sodium hydrogen carbonate aqueous solution, and extracted with ethyl acetate. The extract was washed by saturated saline, dried over anhydrous sodium sulfate, and then concentrated in vacuo to give 3-(4-chlorobenzyl)-2-methylthio-5-(tetrahydro-2H-pyran-4-ylcarbonylamino)pyrimidin-6(1H)-one (48 mg, yield: 100%) as pale yellow solid. 1H-NMR (delta ppm TMS/DMSO-d6): 1.54-1.70 (4H, m), 2.50 (3H, s), 2.83-2.92 (1H, m), 3.27-3.35 (2H, m), 3.84-3.91 (2H, m), 5.25 (2H, s), 7.27 (2H, d, J=7.8 Hz), 7.41 (2H, d, J=7.8 Hz), 8.70 (1H, s), 9.31 (1H, s).

40191-32-0, As the paragraph descriping shows that 40191-32-0 is playing an increasingly important role.

Reference£º
Patent; Shionogi & Co., Ltd.; KAI, Hiroyuki; TANAKA, Satoru; HIRAMATSU, Yoshiharu; NOZU, Azusa; NAKAMURA, Ken’ichioh; (260 pag.)US2016/24072; (2016); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 23462-75-1

23462-75-1 Dihydro-2H-pyran-3(4H)-one 90109, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.23462-75-1,Dihydro-2H-pyran-3(4H)-one,as a common compound, the synthetic route is as follows.,23462-75-1

A solution of tert-butyl hydrazinecarboxylate (6.6 g, 50 mmol) and dihydro-2H-pyran-3(4H)-one (5 g, 50 mmol) in MeOH (50 mL) was stirred at 15 C. for 2 hours. The mixture was concentrated to remove MeOH and the crude was purified by column chromatography on silica gel (petroleum ether:ethyl acetate=1:1) to afford tert-butyl 2-(dihydro-2H-pyran-3(4H)-ylidene)hydrazine-1-carboxylate (10 g, 47 mmol, 93% yield).

23462-75-1 Dihydro-2H-pyran-3(4H)-one 90109, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; H. Lundbeck A/S; Juhl, Karsten; Jessing, Mikkel; Langgard, Morten; Vital, Paulo Jorge Vieira; Marigo, Mauro; Kehler, Jan; Rasmussen, Lars Kyhn; (27 pag.)US2017/291901; (2017); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 2081-44-9

The synthetic route of 2081-44-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.2081-44-9,Tetrahydro-2H-pyran-4-ol,as a common compound, the synthetic route is as follows.

Preparation Example 50 To a solution of tetrahydro-2H-pyran-4-ol (1.00 g) in pyridine (10 mL) was added 4-methylbenzenesulfonyl chloride under ice-cooling, and the reaction mixture was stirred at room temperature for 3 days. To the reaction mixture was added water, followed by extraction with ethyl acetate. The organic layer was washed with 1 M hydrochloric acid, a saturated aqueous sodium hydrogen carbonate solution, and a saturated aqueous sodium chloride solution, and dried over anhydrous magnesium sulfate. The desiccant was removed by filtration and the solvent was evaporated under reduced pressure to obtain tetrahydro-2H-pyran-4-yl 4-methylbenzenesulfonate (2.72 g) as a pale orange oil., 2081-44-9

The synthetic route of 2081-44-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Negoro, Kenji; Ohnuki, Kei; Yonetoku, Yasuhiro; Kuramoto, Kazuyuki; Urano, Yasuharu; Watanabe, Hideyuki; US2012/35196; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 25637-16-5

The synthetic route of 25637-16-5 has been constantly updated, and we look forward to future research findings.

25637-16-5, 4-Bromotetrahydropyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: In air, CuBr (7.1 mg, 0.05 mmol), PPh3 (17.03 mg, 0.065 mmol), LiOtBu(80 mg, 1mmol), and bis(neopentyl glycolato) diboron (168mg, 0.75 mmol ) were added to aSchlenk tube equipped with a stir bar. The vessel was evacuated and filled with argon(three cycles). DMAc (1 mL), alkyl halide (0.5 mmol) were added in turn by syringeunder an argon atmosphere (if the alkyl halide is a solid, it was added along with theCuBr). The resulting reaction mixture was stirred vigorously at 25 C for 18 h. Thereaction mixture was then diluted with EtOAc, filtered through silica gel with copiouswashings (petroleum ether to EtOAc), concentrated, and purified by columnchromatography., 25637-16-5

The synthetic route of 25637-16-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Lou, Xin; Zhang, Zhen-Qi; Liu, Jing-Hui; Lu, Xiao-Yu; Chemistry Letters; vol. 45; 2; (2016); p. 200 – 202;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 103260-44-2

103260-44-2, 103260-44-2 Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate 2773412, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.103260-44-2,Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate,as a common compound, the synthetic route is as follows.

c) To a solution of 425 mg (2.5 mmol) of ethyl 2-(tetrahydro-2H-pyran-4- yl)acetate in 10 mL of dry THF cooled at 05C under argon, a 2.71 mL of a solution of LiAII-U 1 M in THF was added. Bubbling was observed. It was stirred at room temperature for 30 min. Then it was quenched with wet EtAcO, dried with MgS04 and filtered through celite, washing with abundant EtAcO. After removing the solvent the desired compound, 2-(tetrahydro-2H-pyran-4-yl)ethanol, was obtained (300 mg, 93%).

103260-44-2, 103260-44-2 Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate 2773412, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; LABORATORIOS DEL DR. ESTEVE, S.A.; DRACONIS PHARMA, S.L.; ALMIRALL, S.A.; TORRENS JOVER, Andoni; MERCE VIDAL, Ramon; CALDENTEY FRONTERA, Francesc Xavier; RODRIGUEZ GARRIDO, Antonio, David; CARCELLER GONZALEZ, Elena; SALAS SOLANA, Jordi; WO2013/37960; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 125552-89-8

125552-89-8 4-(Bromomethyl)tetrahydropyran 2773286, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.125552-89-8,4-(Bromomethyl)tetrahydropyran,as a common compound, the synthetic route is as follows.

Synthesis of methyl 6-(2,6-difluoro-4-((tetrahydro-2H-pyran-4-yl)methoxy)phenyl)-5-fluoropicolinate A mixture of methyl 6-(2,6-difluoro-4-hydroxyphenyl)-5-fluoropicolinate (1.0 equiv.), 4-(bromomethyl)tetrahydro-2H-pyran (2.0 equiv.) and K2CO3 (4.0 equiv.) in DMF (0.20 M) was heated at 100 C. for 20 min in microwave. The reaction mixture was cooled off to rt and partitioned between EtOAc and H2O. The organic layer was washed with brine, dried over Na2SO4 and concentrated to give methyl 6-(2,6-difluoro-4-((tetrahydro-2H-pyran-4-yl)methoxy)phenyl)-5-fluoropicolinate in 100% yield. LC/MS=382.0 (MH+), Rt=0.97 min., 125552-89-8

125552-89-8 4-(Bromomethyl)tetrahydropyran 2773286, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Burger, Matthew; Ding, Yu; Han, Wooseok; Nishiguchi, Gisele; Rico, Alice; Simmons, Robert Lowell; Smith, Aaron R.; Tamez, JR., Victoriano; Tanner, Huw; Wan, Lifeng; US2012/225061; (2012); A1;; ; Patent; Burger, Matthew; Nishiguchi, Gisele; Machajewski, Timothy D.; Rico, Alice; Simmons, Robert Lowell; Smith, Aaron R.; Tamez, JR., Victoriano; Tanner, Huw; Wan, Lifeng; US2012/225062; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics